Products for USB Sensing and Control Canada flag
Products for USB Sensing and Control

sales inquiries

quotes, distributor information, purchase orders
sales@phidgets.com

technical inquiries

support, advice, warranty, returns, misshipment
support@phidgets.com

website inquiries

corrections or suggestions
web@phidgets.com

Address

Unit 1 - 6115 4 St SE
Calgary AB  T2H 2H9
Canada

PhidgetInterfaceKit 0/0/8

ID: 1017_0

Control 8 DPDT mechanical relays, switching up to 250VAC/2amp or 200VDC/2amp.

Replaced by 1017_2

Replaced by the 1017 - PhidgetInterfaceKit 0/0/8.

The PhidgetInterfaceKit 0/0/8 provides Small Signal Relays with 8 Relay Outputs, rated at 250VAC, or 2 Amps, for a maximum of 65 Watts. It is typically used for switching small signals, as opposed to high current applications. For high current applications see the 1014 - PhidgetInterfaceKit 0/0/4.

Note: When a relay is in one switch position for a period of time, oxidation of the open contact(s) can occur. Depending upon the internal coating material of the contacts, oxide films of varying density will be displaced upon the surface of open contacts; this film acts as an insulator to current flow. When the relay is switched, a certain amount of current flowing through the contacts, known as the wetting current, is required to remove the film of oxides and ensure proper conduction. The wetting current required to operate this relay is low enough for use in signal switching applications.


Comes packaged with:

Guides

Product Specifications

Physical Properties
API Object Name DigitalOutput
Switch Type DPDT
Recommended Wire Size 12 - 26 AWG
Switching Speed Max 20 cpm
Operating Temperature Min 0 °C
Operating Temperature Max 70 °C
Electrical Properties
Dielectric Strength 1.5 kV AC
Contact Resistance Max 50 mΩ
Load Voltage Max (DC) 220 V DC
Load Voltage Max (AC) 250 V AC
Load Current Min 10 μA
Load Current Max (DC) 2 A
Load Current Max (AC) 2 A
Turn-on Time Max 18 ms
Turn-off Time Max 18 ms
Switching Power Max (Real) 60 W
Switching Power Max (Apparent) 125 VA
Board Properties
Current Consumption Min 14 mA
Current Consumption Max 380 mA
USB Speed Low Speed
Customs Information
Canadian HS Export Code 8471.80.00
American HTS Import Code 8471.80.40.00
Country of Origin CN (China)

Software Objects

Device Object Name Channel
Mechanical Relays DigitalOutput 0 - 7

Documents

Code Samples

Language:

APIDetailLanguageOS
DigitalOutput Visual Studio GUI C# Windows Download
DigitalOutput JavaScript Browser Download
DigitalOutput Multi-Channel Example JavaScript Browser Download
DigitalOutput Objective-C macOS Download
DigitalOutput Swift macOS Download
DigitalOutput Swift iOS Download
DigitalOutput Visual Basic .NET Windows Download
DigitalOutput Max/MSP Multiple Download

Product History

Date Board Revision Device Version Comment
February 20080100Product Release
February 2011 Product replaced by 1017_1.


Getting Started

Welcome to the 1017 user guide! In order to get started, make sure you have the following hardware on hand:


Next, you will need to connect the pieces:

1017 1 Connecting The Hardware.jpg
  1. Connect the power supply and load in series.
  2. Connect the ends of the series to the NO (normally open) and the middle pin of one of the terminals.
  3. Connect the Phidget to your computer using the USB cable.


Now that you have everything together, let's start using the 1017!

Using the 1017

Phidget Control Panel

In order to demonstrate the functionality of the 1017, the Phidget Control Panel running on a Windows machine will be used.


The Phidget Control Panel is available for use on both macOS and Windows machines.

Windows

To open the Phidget Control Panel on Windows, find the Ph.jpg icon in the taskbar. If it is not there, open up the start menu and search for Phidget Control Panel

Windows PhidgetTaskbar.PNG

macOS

To open the Phidget Control Panel on macOS, open Finder and navigate to the Phidget Control Panel in the Applications list. Double click on the Ph.jpg icon to bring up the Phidget Control Panel.


For more information, take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the 1017.

First Look

After plugging the 1017 into your computer and opening the Phidget Control Panel, you will see something like this:

1017 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Relay Output

Double-click on a Digital Output object labelled Signal Relay in order to run the example:

1017 RelayOutput Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Toggle the state of the relay by pressing the button.


Finding The Addressing Information

Before you can access the device in your own code, and from our examples, you'll need to take note of the addressing parameters for your Phidget. These will indicate how the Phidget is physically connected to your application. For simplicity, these parameters can be found by clicking the button at the top of the Control Panel example for that Phidget.

The locate Phidget button is found in the device information box

In the Addressing Information window, the section above the line displays information you will need to connect to your Phidget from any application. In particular, note the Channel Class field as this will be the API you will need to use with your Phidget, and the type of example you should use to get started with it. The section below the line provides information about the network the Phidget is connected on if it is attached remotely. Keep track of these parameters moving forward, as you will need them once you start running our examples or your own code.

All the information you need to address your Phidget

Using Your Own Program

You are now ready to start writing your own code for the device. The best way to do that is to start from our Code Samples.

Select your programming language of choice from the drop-down list to get an example for your device. You can use the options provided to further customize the example to best suit your needs.

Code Sample Choose Language.png


Once you have your example, you will need to follow the instructions on the page for your programming language to get it running. To find these instructions, select your programming language from the Programming Languages page.

Technical Details

1017 1 Relay Diagram.jpg

Relays

A relay is an electrically-controlled switch. Although many types of electrical switches exist, a relay’s mechanical nature gives it the advantage of reliability and current-switching capacity. The main disadvantage to using mechanical relays is their limited life-span, as opposed to solid state relays who do not suffer from this drawback. For more information, check the Mechanical Relay Guide and the Solid State Relay Guide.

Using a Digital Output Relay

Relays have a connection scheme determined by the arrangement of contacts within the relay. Because relays are a type of switch, they are defined in the same way other electromechanical switches are defined.

In switch schemes, the number of poles represents the number of common terminals a switch has, and the number of throws represents the number of switchable terminals that exist for each pole. The relays used in the InterfaceKit 0/0/8 are DPDT relays: double pole, double throw. The internal construction of this type of relay is depicted in the diagram above. Many other types of relays exist: SPST, DPDT, and DPST, to name a few.

In a relay, one of the throw terminals is labelled normally closed (NC), and the other is labelled normally open (NO). As the name indicates, the normally closed terminal is the terminal connected to common when the relay coil is not powered. When the relay coil is energized by the relay control circuit, the electromagnetic field of the coil forces the switch element inside the relay to break its contact with the normally closed terminal and make contact with the normally open terminal. The switch element would then connect the normally open terminal and the common terminal.

Rated Current/Voltage/Power

These relays cannot be switched at maximum current and maximum voltage at the same time. Ensure that the total power of the load does not exceed the switching power of the relay. For example, you can switch these relays at 200V DC and 0.3 A (60W), or 30VDC and 2A (60W), but not 200VDC and 2A (400W).

Wetting Current

When a relay is in one switch position for a period of time, oxidation of the open contact(s) can occur. Depending upon the internal coating material of the contacts, oxide films of varying density will be displaced upon the surface of open contacts; this film acts as an insulator to current flow. When the relay is switched, a certain amount of current flowing through the contacts, known as the wetting current, is required to remove the film of oxides and ensure proper conduction. The wetting current required to operate this relay is low enough for use in signal switching applications. Check the specification table for your relay board to find out the Minimum Load Current or Wetting Current.

Load Noise

If highly inductive loads are used with this InterfaceKit, it is recommended that a noise limiting component be used to prevent damage to the device. An MOV, TVS diode, or kickback diode (for DC applications) shunted across the load will assist in dissipating voltage transients.

What to do Next

  • Programming Languages - Find your preferred programming language here and learn how to write your own code with Phidgets!
  • Phidget Programming Basics - Once you have set up Phidgets to work with your programming environment, we recommend you read our page on to learn the fundamentals of programming with Phidgets.


Software Objects

Channel NameAPIChannel
Signal Relay DigitalOutput 0 - 7

API


Back Forward
Print this API